Radiometric dating is a means of determining the "age" of a mineral specimen by determining the relative amounts present of certain radioactive elements.By "age" we mean the elapsed time from when the mineral specimen was formed.Strontium-86 is a stable element that does not undergo radioactive change.In addition, it is not formed as the result of a radioactive decay process.Because of radioactivity, the fraction of rubidium-87 decreases from an initial value of 100% at the time of formation of the mineral, and approaches zero with increasing number of half lives.At the same time, the fraction of strontium-87 increases from zero and approaches 100% with increasing number of half-lives.The two curves cross each other at half life = 1.00.

Therefore the relative amounts of rubidium-87 and strontium-87 can be determined by expressing their ratios to strontium-86: Rb-87/Sr-86 and Sr87/Sr-86 We measure the amounts of rubidium-87 and strontium-87 as ratios to an unchanging content of strontium-86.

The corresponding half lives for each plotted point are marked on the line and identified.

It can be readily seen from the plots that when this procedure is followed with different amounts of Rb87 in different minerals, if the plotted half life points are connected, a straight line going through the origin is produced. The steeper the slope of the isochron, the more half lives it represents.

Therefore the amount of argon formed provides a direct measurement of the amount of potassium-40 present in the specimen when it was originally formed.

Because argon is an inert gas, it is not possible that it might have been in the mineral when it was first formed from molten magma.